
ECO 521b Fall 2020

ENTROPY EXERCISE

A monopolist has demand curve qt = ct − bpt and constant costs γ per unit of product.
Each period, there is a new realization of ct, which is always either 10 or 15, with probability
.5, i.i.d. across t. With no information cost, the monopolist would of course set pt =

1
2(ct/b+

γ). But suppose there is a cost of processing the information in the sequence of ct random
variables, so that the monopolist’s profits are

(pt − γ)(ct − bpt)− θ
(

H(C)− H(C | P)
)

,

where H(C) is the unconditional entropy of ct and H(C | P) is the expected entropy of the
distribution of C | pt. The expression H(C)− H(C | P) is the mutual information between
the monopolist’s choice pt and the unobserved state ct. The monopolist can be thought of as
choosing a joint distribution for pt and ct. Obviously with θ = 0 the joint distribution will
be degenerate, with pt ≡ 1

2(ct/b + γ), but more generally it will not be.
Suppose γ = 2, b = 0.8.

(1) Find the optimal joint distribution of pt and ct as a function of θ. You can assume
(though it can be proved) that the distribution will have just four pt, ct pairs as points
of support.

(2) Show how expected profits vary as a function of θ. The rate of information flow
between ct and pt per period is their mutual information, H(C)− H(C | A). Show
how that varies as a function of θ.

(3) If the monopolist, instead of having a fixed cost per bit of information flow has a fixed
channel capacity (i.e. an upper bound on the information flow rate), how does the so-
lution vary with capacity? Note that the fixed-capacity and fixed-unit-cost solutions
are dual, so you don’t need to re-solve the model to answer this. The interesting
thing is whether there are capacities at which the shadow price of information is zero
and/or costs of information at which no information is processed.

Notes: This will require numerical optimization over the prices chosen and the probabil-
ities — four free parameters. In computing entropy, terms of the form x log x occur. While
x log(x) → 0 as x → 0, asking the computer to find x log x with x = 0 causes problems, so
you need to handle that case.

In numerical optimization, a gradient-based method will try values for probabilities ou-
side of (0, 1). A program passed to the optimizer to evaluate the firm’s objective here will
have to check for probabilities outside (0, 1) and return a very small number (if it is maxi-
mizing, otherwise very large).

You can use any software you like to do this. A program that evaluates the objective
function, written in R, is in the directory with the exercise. However, in order to get you to
understand the code if you use it, it is hard-coded with parameter values for ct, b and γ that
you will have to change to solve the problem as posed.

Date: October 22, 2020.
©2020 by Christopher A. Sims. ©2020. This document is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License.
http://creativecommons.org/licenses/by-nc-sa/3.0/

2 ENTROPY EXERCISE

The R package optimize.1 is also int the exercise directory. You can install it as an R
source package (install.packages("DirectoryWhereItIs/optimize.1", repos=NULL)),
then load it with library("optimize.1"). It contains the gradient-based optimizer csminwelNew(),
which will work on this problem, though again you are welcome to use other software.

Answer:

Giorgios was right, the probability of the action matching the true state is the same for both states
at every value for the cost of information θ, and also that this is because of the quadratic objective.
If the demand curve were constant-elasticity, for example, it would no longer be true.

Here is the table of the results I found.
Low price High price pLL pHH Obj eU info theta

1 8.8126 8.8124 0.5000 0.5000 -37.1281 37.1281 0.0000 4.0000
2 8.2036 9.4214 0.6948 0.6948 -37.1362 37.4246 0.0780 3.7000
3 7.8899 9.7351 0.7952 0.7952 -37.1760 37.8091 0.1862 3.4000
4 7.7243 9.9095 0.8540 0.8525 -37.2469 38.1029 0.2761 3.1000
5 7.5438 10.0812 0.9060 0.9060 -37.3478 38.4158 0.3814 2.8000
6 7.4379 10.1871 0.9399 0.9399 -37.4752 38.6397 0.4658 2.5000
7 7.3614 10.2636 0.9644 0.9644 -37.6262 38.8127 0.5393 2.2000
8 7.3086 10.3164 0.9813 0.9813 -37.7975 38.9375 0.6000 1.9000
9 7.2754 10.3496 0.9919 0.9919 -37.9848 39.0182 0.6459 1.6000

10 7.2579 10.3671 0.9975 0.9975 -38.1834 39.0616 0.6755 1.3000

Here pLL is the probability of the low price conditional on low demand and pHH is the probability
of the high price given high demand. eU is expected utility, info is mutual information between p
and c, and theta is θ.

The problems those of you who used csminwelNew() had may have arisen from picking the
wrong scale for H0, the initial guess of the inverse Hessian. Usually this has to be quite small.
I used diag(4) *1e-4. If it’s too big, the algorithm at first takes very large steps that may
repeatedly send it outside the bounds imposed by probabilities between zero and one.

It’s also true that your values for θ have to be in a certain range to get sensible results. If infor-
mation costs go much below the 1.3 shown in the table, the solution is almost on the boundary of
its domain: probabilities go to one and zero. Gradient based optimizers don’t work well at such
boundaries if the boundaries are enforced (as in my sample code) by jumping discontinuously to
a bad function value when the choice variable goes out of bounds.

So long as θ > 0, the solution is never actually at the boundary, even though for practical
purposes it may be. The entropy of a two-point distribution is −p log p − (1− p) log(1− p).
Its derivative with respect to p is log

(
(1− p)/p

)
. This goes to −∞ as p → 1 and to +∞ as

p → 0. So if we actually have perfect information with p = 1, we reduce our information costs
at an initially infinite rate as we reduce p below one. Similarly we reduce our costs at an initially
infinite rate as we raise p above zero. So with positive θ, it’s never optimal to completely resolve
uncertainty. But as in this example, solutions in which almost no uncertainty remains yet θ > 0
are not uncommon.

Giorgios was also right that the problem can be simplified by recognizing that, given the prob-
abilities of the two possible values of c, the optimal value of p is determined and can be found
analytically. This greatly reduces the burden on the computer, which would be important in a

ENTROPY EXERCISE 3

higher-dimensional variant of this problem. It might also make the solution numerically less sen-
sitive, though the equations might still misbehave at the boundaries. The code I provided, and
that was used for the table above, lets the computer do the algebra.

