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Macro stylized facts

I For macro time series that are not auction-market prices and
are not linked by accounting identities, typical impulse
responses show a substantial weight at zero lag for own
shocks, but a smooth hump shape for cross-variable shocks.

I To explain the smooth hump shapes, economic modelers
introduce “adjustment costs”, which have no clear connection
to anything measurable in microeconomic data.

I The adjustment costs themselves imply that own-responses
should also be smooth. Thus additional shocks, that change
choice variables without incurring adjustment costs, are also
required.



Micro stylized facts

I Most people, most of the time, do not respond immediately to
price signals, and indeed may not even be fully aware of price
changes.

I For example: A person driving down Route 1 in New Jersey
has dozens of opportunities to buy gas, at prices that are
posted on large signs so she can see them as she drives by.

I A fully rational agent would keep track of the price
distribution and the amount of gas in the gas tank,
continually re-optimizing to decide where to buy gas.

I An actual person probably is listening to the radio and talking
with her companions instead, stopping to buy gas at the first
station to show up when the low-gas signal lights up, so long
as the price doesn’t look too outrageous.



Micro stylized facts

I Most people, most of the time, do not respond immediately to
price signals, and indeed may not even be fully aware of price
changes.

I For example: A person driving down Route 1 in New Jersey
has dozens of opportunities to buy gas, at prices that are
posted on large signs so she can see them as she drives by.

I A fully rational agent would keep track of the price
distribution and the amount of gas in the gas tank,
continually re-optimizing to decide where to buy gas.

I An actual person probably is listening to the radio and talking
with her companions instead, stopping to buy gas at the first
station to show up when the low-gas signal lights up, so long
as the price doesn’t look too outrageous.



Information processing costs: Shannon’s measure

I It seems realistic to recognize that even freely available
information is sometimes ignored, because processing it is in
some sense costly.

I An economist wants to include this cost in the rational
agent’s decision problem.

I But how to measure such a cost? Shannon had an answer.

I If you believe information flow should be modeled as reducing
uncertainty about some random quantities, and if you believe
that information flows from observing two random quantities
in succession should “add up” to the amount in the two
random quantities observed jointly: You end up with
Shannon’s measure.
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Shannon’s measure is all around us

I We’re used to measuring he speed of an internet connection
in megabits per second: This is a measure of the maximal rate
of information flow over the connection, in Shannon’s units.

I It is usable across arbitrary variations in hardware — one
doesn’t need to know whether the connection is fiber, coax
cable, wireless, etc.

I This is one reason it is promising for economic modeling — it
abstracts from the detail of people’s “hardware”.



Shannon capacity constraint’s generic implications for
dynamics

I With a capacity constraint preventing full adjustment of a
decision variable x to a target y , we find that the relation
between y and x differs from the unconstrained case exactly
along the lines of the macro stylized facts.

I The own-responses must be less smooth than the y to x
responses if the rate of mutual information flow between y
and x is finite.

I These ideas were laid out in my 2003 JME paper.



This paper

I Authors: Junehyuk Jung, Jeong-Ho Kim, Filip Matejka, and
Chris Sims

I Subject: Understanding economic behavior with an
information-processing constraint in non-Gaussian, non-LQ
cases.

I Results: In broad classes of cases, the information constraint
converts continuously distributed optimizing behavior into
behavior that is either entirely discretely distributed or is
distributed over a lower-dimensional set than the
unconstrained behavior.



The static information-constrained decision problem

max
f ,µx

∫
U(x , y)f (x , y)µx(dx)µy (dy)

− α−1
(∫

log(f (x , y))f (x , y)µx(dx)µy (dy)

+

∫
log
(∫

f (x , y ′)µy (dy ′)
)
f (x , y)µx(dx)µy (dy)

)
(1)

subject to

∫
f (x , y)µx(dx) = g(y) , a.s. µy (2)

f (x , y) ≥ 0 , all x , y , (3)



Implications of the FOC’s

At all values of x where p(x) > 0, The FOC’s of the problem with
respect to f imply that at all values of x , y with f (x , y) > 0 and
g(y) > 0

U(x , y) = θ(y) + α−1 log

(
f (x , y)∫
f (x , y) dy

)
(4)

∴ f (x , y) = p(x)eαUh(y) (5)

∴
∫

p(x)eαU(x ,y) dx · h(y) = g(y) , (6)



The function C (x) =
∫
eαU(x ,y)h(y) dy

I It has to be one whenever p(x) > 0, because for these values
of x it is the integrand is the conditional pdf of y | x .

I So B = {x | C (x) = 1} contains the support of x .

I If the objective function U is analytic in x on an open set S , it
is often easy to show that C (x) is also analytic in x .

I Then B is either the whole of S or it contains no open sets.
When S is one-dimensional, B is either the whole of S or a
countable collection of points with no limit points in S .
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Monopolist with random costs

I x is price; y is unit cost.

I U(x , y) = q(x) · (x − c)

I Say q(x) = a− bx and x restricted to (0, a/b).

I Then price has a distribution with support a finite set of
points within (0, a/b)

I This model was solved numerically in earlier work by Matejka,
where the discreteness was apparent.



What the pricing model might explain

I Micro data on prices show that for a given product they tend
to remain constant for a while, but jump around between a
finite set of values.

I If Shannon information-processing costs were the explanation,
this would suggest not trying to connect the frequency of
price adjustments to any measurable physical “menu cost”.



Portfolio choice

I Fixed wealth of 1 to be allocated over a risk free asset and a
collection of risky assets with yields z = y + ε

I x : portfolio weights (sum to one)

I ε: “hard” uncertainty; information-processing can’t reduce it.
Only y is reducible.

I U(x , y) = Eε[V (x ′y)]



Results for quadratic utility, Gaussian randomness

I This is not an “LQ” problem, because objective is a quadratic
function of a quadratic.

I We can show analytically that the solution concentrates on a
set of less than two dimensions.

I We assume two risky assets, with yields independent of each
other and identically normally distributed, plus a riskless asset.

I The plots show weights on the two risky assets.



Interpretation of results

I At high information costs, the agent just chooses to go long
or short risky assets, keeping the weights on the two fixed.

I At moderate information costs, the weights are distributed
over four points, corresponding to relatively long or short risky
asset 1 and long or short risky assets generally.

I At low information costs the risky asset weights distribute on
a circle. Note that this implies that the riskless asset has a
u-shaped pdf, so that there is still a tendency for portfolios to
be at the extremes of being long or short on risk.



Portfolio choice, high information cost



Portfolio choice, medium information cost



Portfolio choice, low information cost



Linear-quadratic tracking

maxE [−(x − y)′A(x − y)− θI (x , y) subject to

y ∼ N(0,Σ)

I (x , y) = 1
2 log |Σ| − 1

2 log |Var(y | x)|
= 1

2 log |Σ| − 1
2 log |Σ− Var(x)|

Certainty-equivalence: optimally, E [y | x ] = x . It will be optimal
to have x jointly normally distributed with y . Of course without
the information constraint, y ≡ x , so x ∼ N(0,Σ) and its
distribution has the whole space as support.



Low-dimensional behavior

I When y and x are one-dimensional, if θ is high enough, it will
be optimal to collect no information, so Σ = Var(y | x) and
the distribution of x is degenerate, concentrated on the point
x = E [y ].

I When θ becomes small enough, the distribution of x in this
LQ case immediately has full support.

I When x is multi-dimensional, so we are tracking several y ’s, it
is again true that for large enough θ x ≡ E [y ].

I But now, when θ falls just below the threshold, the
distribution of x goes from being 0-dimensional to being
1-dimensional. Then as θ falls further there is a switch to
two-dimensional x , etc.



Water-filling

I If A = I and Σ is diagonal, with σii > σjj when i > j , the
solution has this form: For high enough θ (information cost),
it is optimal to collect no information, i.e. concentrate the
distribution of x entirely on the point E [y ].

I As θ drops, we start to get Var(xn) > 0, while Var(xi ) = 0 for
i < n .

I As θ drops further, we start to get Var(xn−1) > 0, with
Var(y1 | x) = Var(y2 | x).

I When the distribution of x has full support, Var(y | x) = θI .

I This is a classic result in engineering literature on “rate
distortion theory”, of which our information-constrained
decision problem is a generalization.



Conclusion

I “Stickiness” is pervasive in economic behavior, and attempts
to model it as due to high physical costs of rapid change are
mostly misguided.

I These “adjustment costs” are not directly measurable with
micro data and hard to calibrate (maybe because they do not
exist) even by anecdote or introspection.

I Whether stickiness is due to adjustment costs or instead to
information processing costs may have policy-relevant
implications for calculating the costs of business cycles and for
predicting the effects on behavior of policy changes or
exogenous changes in the stochastic environment. For
example the standard rational expectations approach to
modeling the effects of a change in the policy rule will not be
correct if based on physical adjustment costs.



The road forward

I Models in which agents optimize subject to Shannon
information processing costs are at this point (and maybe
forever) hard to solve. This does not mean we should ignore
the insights they provide.

I For example, models with ad hoc inertia, qualitatively
motivated by information costs, may be more reliable than
models that try to “micro-found” inertia using physical
adjustment costs.

I Research on cheap approximate methods of solving models
with information costs would be valuable.
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